Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization
Robert B Ash Reihenfolge der Bücher



- 2000
- 1975
Topics in Stochastic Processes
- 338 Seiten
- 12 Lesestunden
Stochastic Processes, Introduction, Covariance functions, Second order calculus, Karhunen-loeve expansion, Estimation problems, Notes; Spectral theory and prediction, Introduction, L Stochastic integrals, Decomposition of stationary processes, Examples of discrete parameter processes, Discrete parameter prediction: Special cases, Discrete parameter prediction: General solution, Examples of continuous parameter processes; Continuos parameter prediction special cases; yaglom's method, Some stochastic differential equations, Continuos parameter prediction: remarks on the general solution, Notes; Ergodic theory, Ergodicity and mixing, The pointwise ergodic theorem, Applications to real analysis, Applications to Markov chains, The Shannon-mcMillan theorem, Notes; Sample function analysis of continuous parameter stochastic processes, Separability, Measurability, One-Dimensional brownian motion, Law of the iterated logarithm, Markov processes, Processes with independent increments, Continuous parameter martingales, The strong Markov property, Notes; The ito integral and stochastic differential equations, Definitions of the ito integral, Existence and uniqueness theorems for stochastic differential equations, Stochastic differentials: A chain rule, Notes.
- 1972
Real Analysis and Solutions to Problems presents solutions to problems in real analysis and probability. Topics covered range from measure and integration theory to functional analysis and basic concepts of probability; the interplay between measure theory and topology; conditional probability and expectation; the central limit theorem; and strong laws of large numbers in terms of martingale theory.Comprised of eight chapters, this volume begins with problems and solutions for the theory of measure and integration, followed by various applications of the basic integration theory. Subsequent chapters deal with functional analysis, paying particular attention to structures that can be defined on vector spaces; the connection between measure theory and topology; basic concepts of probability; and conditional probability and expectation. Strong laws of large numbers are also taken into account, first from the classical viewpoint, and then via martingale theory. The final chapter is devoted to the one-dimensional central limit problem, with emphasis on the fundamental role of Prokhorov's weak compactness theorem.This book is intended primarily for students taking a graduate course in probability.