Gratis Versand ab € 9,99
Bookbot

Jim Albert

    Jim Albert ist ein renommierter Universitätsprofessor für Statistik, dessen Forschungsinteressen im Bereich des Bayes'schen Modellierens und der Anwendung statistischen Denkens im Sport liegen. Seine Arbeit befasst sich mit den Prinzipien der Statistik und ihren praktischen Anwendungen. Seine Veröffentlichungen erforschen die Nuancen der Datenmodellierung und die Nutzung bayes'scher Methoden zur Aufdeckung von Erkenntnissen in Daten.

    Use R!: Bayesian Computation with R
    • Use R!: Bayesian Computation with R

      • 270 Seiten
      • 10 Lesestunden

      The development and application of Bayesian inferential methods have seen significant growth, largely due to powerful simulation-based algorithms that summarize posterior distributions. Interest in the R programming language for statistical analyses has also increased, as its open-source nature, free availability, and extensive contributor packages make it a preferred choice for statisticians. This text introduces Bayesian modeling through computation using R, starting with fundamental Bayesian concepts illustrated by one and two-parameter inferential problems. It covers computational methods like Laplace's method, rejection sampling, and the SIR algorithm within a random effects model framework. The book also introduces Markov Chain Monte Carlo (MCMC) methods, applied to various Bayesian applications including normal and binary response regression, hierarchical modeling, and robust modeling. R algorithms are utilized for developing Bayesian tests and assessing models via the posterior predictive distribution, along with interfacing R with WinBUGS for MCMC. This resource is ideal for introductory courses on Bayesian methods and for practitioners seeking to enhance their knowledge of R and Bayesian techniques. The second edition features new topics like mixtures of conjugate priors and Zellner’s g priors for model selection in linear regression, along with updated R code illustrations in line with the latest LearnBayes package.

      Use R!: Bayesian Computation with R2007
      3,4