Gratis Versand in ganz Österreich
Bookbot

Seymor Goldberg

    Advances in Structured Operator Theory and Related Areas
    Topics in Interpolation Theory of Rational Matrix-valued Functions
    • One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.

      Topics in Interpolation Theory of Rational Matrix-valued Functions
    • Advances in Structured Operator Theory and Related Areas

      The Leonid Lerer Anniversary Volume

      • 246 Seiten
      • 9 Lesestunden

      This volume is dedicated to Leonid Lerer on the occasion of his seventieth birthday. The main part presents recent results in Lerer’s research area of interest, which includes Toeplitz, Toeplitz plus Hankel, and Wiener-Hopf operators, Bezout equations, inertia type results, matrix polynomials, and related areas in operator and matrix theory. Biographical material and Lerer's list of publications complete the volume.

      Advances in Structured Operator Theory and Related Areas