Fitting and Mendelsohn offer an in-depth exploration of first-order modal logic, utilizing possible world models, tableau proofs, and philosophical discussions. Key topics include quantification, equality, existence, non-rigid constants, predicate abstraction, and definite descriptions, addressing significant philosophical issues.
M. Fitting Bücher
Melvin Fitting ist ein Logiker mit besonderem Interesse an philosophischer Logik und Tableau-Beweissystemen. Seine Arbeit wird durch die Erkenntnis motiviert, dass Logik vielfältig ist und sich an Kontext und Thema anpasst. Er vertritt die Ansicht, dass Logik ein Werkzeug zur Untersuchung von Kohärenz ist, nicht zur Feststellung absoluter Wahrheit. Fitting bemüht sich, philosophische Positionen in formale Systeme zu integrieren, um deren innere Konsistenz zu demonstrieren. Er betrachtet Logik als ein dynamisches und erfreuliches Denkwerkzeug.




Incompleteness in the Land of Sets
- 156 Seiten
- 6 Lesestunden
Exploring the implications of Russell's paradox, the book delves into the complexities of set theory and logical formulas. It highlights how the collection of sets that do not contain themselves cannot form a set, leading to the conclusion that certain formulas are undefinable. This discussion paves the way for Tarski's result on the undefinability of truth and connects to significant contributions from Gödel, Church, Rosser, and Post, illustrating the profound impact of these ideas on mathematical logic and the foundations of mathematics.
Types, Tableaus, and Gödels God
- 200 Seiten
- 7 Lesestunden
The book delves into Gödel's modal ontological argument within the framework of intensional logic. It begins with a semantic presentation of classical type theory and introduces tableau rules, culminating in a completeness proof. The discussion expands to include modal logic, exploring concepts like extensionality and identity. Various ontological proofs for God's existence are examined, leading to a formalization of Gödel's argument. The author critiques objections, particularly Sobel's challenge regarding Gödel's assumptions, emphasizing the distinction between intensional and extensional interpretations of properties.
This book explores various formal proof procedures developed by logicians, including tableau systems, Gentzen sequent calculi, natural deduction systems, and axiom systems. It covers proof methods for normal and non-normal modal logics, as well as Intuitionistic and Classical logic, providing a comprehensive study of each system's applications and differences.