Gratis Versand in ganz Österreich
Bookbot

Heinrich Rommelfanger

    Fuzzy-decision-support-Systeme
    Entscheidungstheorie
    Übungsbuch Mathematik für Wirtschaftswissenschaftler
    Neue Anwendungen von Fuzzy-Logik und künstlicher Intelligenz
    Mathematik für Wirtschaftswissenschaftler 1
    Mathematik für Wirtschaftswissenschaftler
    • In diesem Buch werden die Teile der linearen Wirtschaftsalgebra dargestellt, deren Kenntnis zum Lösen ökonomischer Probleme in Wissenschaft und Praxis unentbehrlich ist. Aus didaktischen Gründen behandelt der Autor zunächst Lösungsalgorithmen zu linearen Systemen, bevor die abstrakteren Konzepte der Vektoren-, Matrizen- und Determinantentheorie dargestellt werden. Die auf der Berechnung von Determinanten basierenden hinreichenden Bedingungen für das Vorliegen von relativen Extrema für Funktionen mehrerer Variabler mit und ohne Nebenbedingung(en) sind so formuliert, daß auch Nicht-Mathematiker damit problemlos arbeiten können. Zahlreiche Beispiele, darunter viele ökonomische Anwendungsfälle und Kontrollaufgaben erleichtern das Verständnis und machen den Leser mit den Rechentechniken vertraut.

      Mathematik für Wirtschaftswissenschaftler
    • KlappentextIn diesem Buch werden mathematische Grundlagen und Teilgebiete der Analysis behandelt, deren Kenntnis zum Lösen ökonomischer Probleme in Wissenschaft und Praxis unentbehrlich ist. Der Autor begründet Begriffe und Methoden aus ihren anschaulichen Quellen heraus und zeigt die konstruktiven Aspekte der Mathematik auf. Beweise werden nur dann geführt, wenn sie unmittelbar zum Verständnis beitragen. Zahlreiche Beispiele, darunter viele ökonomische Anwendungsfälle und Kontrollaufgaben, erleichtern das Verständnis und machen den Leser mit den Rechentechniken vertraut.

      Mathematik für Wirtschaftswissenschaftler 1
    • Trotz des Siegeszuges der Fuzzy-Logik in der Regelungstechnik sind die Anwendungen der Fuzzy-Mengen-Theorie in anderen Bereichen oft unterrepräsentiert. Dies liegt an der Komplexität der Systeme, wodurch die Vorteile einer realistischeren Modellierung nicht sofort erkennbar sind. Die Praxis benötigt jedoch Modelle, die reale Probleme präzise abbilden und fehlerhafte Modellierungen verhindern. Fuzzy-Mengen-Theorie ermöglicht es, unpräzises oder unsicheres Wissen in Modelle einzubeziehen und mathematisch darzustellen. Zudem können durch linguistische Variablen funktionierende Expertensysteme entwickelt werden, die qualitative Informationen effektiv verarbeiten. Diese Systeme erweitern das Spektrum der Künstlichen Intelligenz, indem sie kognitive Prozesse nachbilden und informationsverarbeitende Systeme modellieren, um neues Wissen zu generieren. Ein weiterer Anwendungsbereich sind Neuronale Netzwerke, insbesondere zur Prognose in ökonomischen Kontexten. Die Arbeitsgruppe „Fuzzy Systeme, Neuronale Netze und Künstliche Intelligenz“ der Gesellschaft für Operations Research e. V. (GOR) fördert den Austausch zwischen Ingenieuren, Informatikern, Mathematikern und Wirtschaftswissenschaftlern. Das Buch präsentiert Forschungsarbeiten, die beim Workshop der GOR-Arbeitsgruppe am 21. Februar 2005 an der J. W. Goethe-Universität Frankfurt am Main vorgestellt wurden, mit einem besonderen Fokus auf die Anwendung von Fuzzy-Systemen in den Finan

      Neue Anwendungen von Fuzzy-Logik und künstlicher Intelligenz
    • Das Übungsbuch Mathematik ist eine gelungene Synthese mathematischer Korrektheit und der Vermittlung anwendungsorientierter Aufgabenstellungen in den Wirtschaftswissenschaften. ich empfehle es sehr! Prof. Dr. Volker Nollau, Technische Universität Dresden Eine gelungene Übungssammlung für Mathematik-Anfänger der Wirtschaftswissenschaften. Prof. Dr. Reinhard Viertl, Technische Universität Wien Sehr umfangreiche und weitgreifende Aufgabensammlung. Dirk Hansel, Technische Fachhochschule Bochum

      Übungsbuch Mathematik für Wirtschaftswissenschaftler
    • Entscheidungstheorie

      Klassische Konzepte und Fuzzy-Erweiterungen

      • 284 Seiten
      • 10 Lesestunden

      Dieses Buch vermittelt eine präskriptive Entscheidungstheorie für die Praxis. Dazu werden zunächst die klassischen Entscheidungskonzepte für Ein-, Mehrziel- und Gruppenentscheidungen gut verständlich eingeführt und gezeigt, wie unter den Rahmenbedingungen Sicherheit, Risiko oder Unsicherheit im engeren Sinne Entscheidungsprobleme gelöst werden können. Darauf aufbauend wird diskutiert, wie diese Modelle den realen Gegebenheiten in Gestalt beschränkt rationalen Verhaltens und unvollkommener und unscharfer Informationen angepaßt werden können. Eine Lösung des Informationsdilemmas sehen die Autoren in der Verwendung von Fuzzy-Entscheidungsmodellen. Zahlreiche Beispiele erleichtern dem Leser das Verständnis der vorgestellten Methoden oder unterstützen die Argumentationen.

      Entscheidungstheorie
    • Dieses Buch vermittelt einen gründlichen Einblick in den aktuellen Stand der Fuzzy-Entscheidungstheorie und der linearen Fuzzy-Optimierung. Nach einer auch für Nicht-Mathematiker leicht lesbaren Einführung in die Theorie unscharfer Mengen werden nicht nur die verschiedensten Entscheidungs- und Optimierungsmodelle in einer Gesamtkonzeption dargestellt, sie werden auch kritisch auf ihre Anwendbarkeit hin überprüft. Der Teil A des Buches ist Alternativentscheidungen gewidmet. Im Teil B werden recheneffiziente Methoden zum Lösen von linearen Programmierungs- und linearen Vektoroptimierungssystemen behandelt.

      Fuzzy-decision-support-Systeme