Rolf Isermann Bücher




Identifikation dynamischer Systeme 2
- 336 Seiten
- 12 Lesestunden
Für viele Aufgabenstellungen bei der Automatisierung technischer Systeme sowie im Bereich der Naturwissenschaften und Wirtschaftswissenschaften benötigt man genaue mathematische Modelle für das dynamische Verhalten von Systemen. Das Werk behandelt Methoden zur Ermittlung dynamischer Modelle aus gemessenen Signalen, die unter dem Begriff Systemidentifikation oder Prozeßidentifikation zusammengefaßt werden. Band 2 beschreibt weitergehende Methoden und Anwendungen: - Maximum-Likelihood-Methode; - Rekursive Parameterschätzung; - Modellabgleich-Verfahren; - Mehrgrößen- und nichtlineare Systeme; - Anwendungen in Maschinenbau und Elektrotechnik, Energie- und Verfahrenstechnik. Beide Bände bilden eine Einheit und führen systematisch von den Grundlagen bis zu den Problemen des praktischen Einsatzes. Sie wenden sich daher sowohl an Studenten der Fachrichtungen Elektrotechnik, Maschinenbau, Informatik, Mathematik, Natur- und Wirtschaftswissenschaften als auch an die in der Praxis tätigen Ingenieure und Wissenschaftler.
Elektronisches Management motorischer Fahrzeugantriebe
- 462 Seiten
- 17 Lesestunden
Die stark gestiegenen Forderungen zur Erhöhung der Leistung und zur Senkung von Kraftstoffverbrauch und Emissionen führen zu einer Zunahme der Steuerungs-, Regelungs- und Diagnosefunktionen.
Identifikation dynamischer Systeme 1
- 330 Seiten
- 12 Lesestunden
Für viele Aufgabenstellungen bei der Automatisierung technischer Systeme und im Bereich der Naturwissenschaften und Wirtschaftswissenschaften benötigt man genaue mathematische Modelle für das dynamische Verhalten von Systemen. Das Werk behandelt Methoden zur Ermittlung dynamischer Modelle aus gemessenen Signalen, die unter dem Begriff Systemidentifikation oder Prozeßidentifikation zusammengefaßt werden. In Band 1 werden die grundlegenden Methoden behandelt. Nach einer kurzen Einführung in die benötigten Grundlagen linearer Systeme wird zunächst die Identifikation nichtparametrischer Modelle mit zeitkontinuierlichen Signalen mittels Fourieranalyse, Frequenzgangmessung und Korrelationsanalyse behandelt. Dann folgt eine Einführung in die Parameterschätzung für parametrische Modelle mit zeitdiskreten Signalen. Dabei steht die Methode der kleinsten Quadrate im Vordergrund, gefolgt von ihren Modifikationen, der Hilfsvariablenmethode und der stochastischen Approximation.