Exploring the evolution of proof, this book highlights its crucial role in shaping mathematical knowledge from ancient to modern times. It traces the journey from Euclid's geometry to the development of algebra and calculus, illustrating how proof methods have transformed. The discussion extends to number theory, non-Euclidean geometry, and logic, revealing the profound implications of proof on arithmetic and the limitations it imposes on theorem validation. Through historical episodes, it provides a fresh perspective on mathematics' foundational principles and its capacity for innovation.
John Stillwell Reihenfolge der Bücher






- 2022
- 2022
This book, meant for undergraduate mathematics students and teachers, introduces algebraic number theory through problems from ordinary number theory that can be solved with the help of algebraic numbers, using a suitable generalization of unique prime factorization. The material is motivated by weaving historical information throughout.
- 2019
A Concise History of Mathematics for Philosophers
- 75 Seiten
- 3 Lesestunden
This Element aims to present an outline of mathematics and its history, with particular emphasis on events that shook up its philosophy. It ranges from the discovery of irrational numbers in ancient Greece to the nineteenth- and twentieth-century discoveries on the nature of infinity and proof. Recurring themes are intuition and logic, meaning and existence, and the discrete and the continuous. These themes have evolved under the influence of new mathematical discoveries and the story of their evolution is, to a large extent, the story of philosophy of mathematics.
- 2018
Reverse Mathematics
- 200 Seiten
- 7 Lesestunden
This volume presents reverse mathematics to a general mathematical audience for the first time. Stillwell gives a representative view of this field, emphasizing basic analysis--finding the "right axioms" to prove fundamental theorems--and giving a novel approach to logic. to logic.
- 2017
Elements of Mathematics
- 440 Seiten
- 16 Lesestunden
Stillwell is . . . One of the better current mathematical authors: he writes clearly and engagingly, and makes more of an effort than most to provide historical detail and a sense of how various mathematical ideas tie in with one another. . . . The features we have learned to expect from Stillwell (including, but not limited to, excellent writing) are present in [Elements of Mathematics] as well.--MAA Reviews
- 2014
In dem Buch erkundet der preisgekrönte Autor John Stillwell die Konsequenzen, die sich ergeben, wenn man die Unendlichkeit akzeptiert, und diese Konsequenzen sind vielseitig und überraschend. Der Leser benötigt nur wenig über die Schulmathematik hinausgehendes Hintergrundwissen; es reicht die Bereitschaft, sich mit ungewohnten Ideen auseinanderzusetzen. Stillwell führt den Leser sanft in die technischen Details von Mengenlehre und Logik ein, indem jedes Kapitel einem einzigen Gedankengang folgt, der mit einer natürlichen mathematischen Frage beginnt und dann anhand einer Abfolge von historischen Antworten nachvollzogen wird. Auf diese Weise zeigt der Autor, wie jede Antwort ihrerseits zu neuen Fragen führt, aus denen wiederum neue Begriffe und Sätze entstehen. Jedes Kapitel endet mit einem Abschnitt „Historischer Hintergrund“, der das Thema in den größeren Zusammenhang der Mathematik und ihrer Geschichte einordnet.
- 2013
Linking set theory with analysis, this text offers a detailed exploration of the real numbers system. It provides a unique introduction to set theory while thoroughly explaining the fundamental concepts of analysis, filling a gap in standard curricula. The book aims to enhance understanding of both mathematical fields through its comprehensive approach.
- 2011
Classical Topology and Combinatorial Group Theory
- 352 Seiten
- 13 Lesestunden
Focusing on geometric aspects, this introduction to topology provides a rich historical context and visual interpretation of concepts. The second edition enhances the learning experience with 300 illustrations, a variety of exercises, and challenging open problems. A new chapter dedicated to unsolvable problems adds depth, making this edition a comprehensive resource for both students and enthusiasts of topology.
- 2010
Exploring the intersection of set theory and mathematical logic, this book delves into their influence on contemporary mathematics, particularly in number theory and combinatorics. It examines how foundational questions about infinity and the nature of proof have shaped mathematical thought. By tracing the evolution of these ideas, the text provides a comprehensive understanding of their relevance in modern mathematical discussions and developments.
- 2005
The Four Pillars of Geometry
- 229 Seiten
- 9 Lesestunden
This book explores four distinct approaches to teaching geometry, highlighting the evolution from Euclid's methods to modern concepts like linear algebra and transformation groups. Each approach is presented in two chapters: one concrete and introductory, the other more abstract, illustrating the richness and diversity of geometric understanding.