Gratis Versand in ganz Österreich
Bookbot

Hartmut Wendt

    Electrochemical engineering
    Electrochemical Engineering
    Öffentliche Energieversorgung und Hausenergiesysteme mit Brennstoffzellen
    Brennstoffzellen
    • Brennstoffzellen für den Antrieb von Automobilen durchlaufen eine stürmische Entwicklung, und fast alle großen Autohersteller beteiligen sich daran. Brennstoffzellen sind jedoch auch gut für die Kraft-Wärme-Kopplung geeignet. Das Buch beschreibt die Verwendung von Brennstoffzellen der phosphorsauren, oxidkeramischen und Karbonatschmelzentechnik für Kraftwärmeanlagen der 100 kW-Klasse für BHKW. Eine neue Entwicklung der oxidkeramischen Technik und der Membranbrennstoffzellen in Kleinanlagen der kW-Klasse eignet sich besonders gut für die Hausenergieversorgung. Der Themenband behandelt die Grundlagen der Technik sowie Fragen der Planung und Genehmigung von Anlagen der 100 kW-Klasse und beschreibt die Möglichkeiten der kleinen Hausanlagen. Rechenaufgaben ergänzen die Ausführungen und machen mit den technischen und thermodynamischen Besonderheiten dieser Technik vertraut.

      Öffentliche Energieversorgung und Hausenergiesysteme mit Brennstoffzellen
    • Electrochemical Engineering

      Science and Technology in Chemical and Other Industries

      • 436 Seiten
      • 16 Lesestunden

      Electrochemical engineering diverges significantly from traditional chemical engineering due to the unique physics and physical chemistry involved in systems like electrolyzers, batteries, and fuel cells. Key distinctions include the critical roles of interfacial charge transfer, current density distributions, and mass transfer limitations in liquid electrolytes. This field has evolved with a focus on high-level mathematics to model various configurations accurately. However, it often overlooks the chemical aspects integral to electrochemical technology, highlighting a gap in interdisciplinary understanding.

      Electrochemical Engineering
    • Electrochemical Engineering sounds very much like chemical engineering, but the chemists, electro chemists, material scientists and whoever else comes into touch with technical electrochemical systems very soon gets the feeling, that chemical engineering wisdom will not get them very far in enhancing their un derstanding and helping them to solve their problems with technical electro chemical devices. Indeed not only the appearance of but also the physics and physical chemistry in electrochemical reactors - electrolyzers, batteries or fuel cells and others - are quite different from that of normal chemical reactors. Next to interfacial charge transfer and current density distributions is the relatively high importance of mass transfer and its hindrance in liquid electrolytes which distinguishes electrolyzers from chemical reactors. Therefore electrochemical engineering science became a science branch which at first developed with little reference to chemical engineering treating the relevant topics on a high mathe maticallevel. This has led to a certain perfection, which today - in principl- allows us to model almost any desired electrolyzer or cell configuration with nu merical methods to a degree and precision which satisfies the highest demands. This is classical chemical engineering stuff, which, however, neglects the chem ical side of electrochemical technology.

      Electrochemical engineering