Hocheffizienter DC/DC-Wandler auf Basis von GaN-Leistungsschaltern für Hochleistungs-Leuchtdioden im Kraftfahrzeug
Autoren
Mehr zum Buch
In der vorliegenden Arbeit werden Möglichkeiten zur Maximierung der Effizienz von stromregelnden DC/DC-Wandlern für den Betrieb von Hochleistungs-LEDs in PKW-und Motorrad-Beleuchtungseinrichtungen untersucht, mit dem Ziel, das Gewicht und den Energieverbrauch der Steuergeräte zu reduzieren und so zu dem stetigen Bestreben der Minimierung der Gesamtfahrzeugemissionen beizutragen. Dafür werden verschiedene, teils sequenziell aufbauende Maßnahmen in Topologie, Bauelementen, Dimensionierung und Betriebsart betrachtet. Eine grundlegende Herausforderung für die Auslegung der Schaltung stellt dabei deren universelle Verwendbarkeit als Gleichteil in einem großen Bereich an Ausgangsstrom und -spannung in den individuellen Scheinwerfersystemen der verschiedenen Fahrzeugderivate dar. Die Grundlage für die Verringerung der Verlustleistung bildet die Vereinfachung der Schaltreglertopologie hinsichtlich des Bauteilaufwands. Dies wird durch die Versorgung der Schaltung aus dem 48 V-Energiebordnetz und die Verwendung der Topologie des Tiefsetzstellers erreicht. Elementarer Anteil dieser Arbeit ist die Untersuchung der Wirksamkeit des Einsatzes neuartiger Galliumnitrid-Leistungsschalter (GaN-HEMTs) anstelle der konventionellen Silizium-MOSFETs, was zunächst an Hand von Berechnungen und schaltungstechnischen, parasitärbehafteten und zeitvarianten Simulationen durchgeführt wird. Bereits bei herkömmlichen Schaltfrequenzen und hartgeschaltetem Betrieb können signifikante Verbesserungen des Wirkungsgrades erreicht werden. Weitergehend wird der Nutzen der durch die GaN-Transistoren ermöglichten höheren Schaltfrequenzen eruiert. Die um bis zu Faktor 20 erhöhte Schaltfrequenz macht den Einsatz einer resonanten Betriebsart (Zero-Voltage-Switching) und einer Luftspule als Hauptinduktivität notwendig. Auf Steuergeräteebene kann somit die Verlustleistung auf unter ein Drittel reduziert werden, was zudem ein deutlich einfacheres und kompakteres Gehäuse ermöglicht, wodurch das Gesamtgewicht etwa halbiert werden kann. Abschließend wird die Schaltung in einem Prototypen praktisch umgesetzt und die Funktionsfähigkeit im ZVS-Betrieb bei Schaltfrequenzen von bis zu 10 MHz verifiziert.