Parameter
- Seitenzahl
- 222 Seiten
- Lesezeit
- 8 Stunden
Mehr zum Buch
Integrální počet je druhou základní partií úvodního kurzu matematické analýzy. Toto skriptum je určeno posluchačům bakalářského studia odborné i učitelské matematiky, fyziky, matematické ekonomie a informatiky. Celý text je rozdělen do šesti kapitol. V úvodní kapitole jsou probrány základní metody určování primitivních funkcí. Druhá kapitola je věnována konstrukci, vlastnostem a výpočtu určitého (Riemannova) integrálu. Třetí kapitola pojednává o nevlastních integrálech, a to jak o integrálech přes neohraničený obor, tak i o integrálech z neohraničených funkcí. Ve čtvrté kapitole jsou studovány geometrické a některé základní fyzikální aplikace určitého integrálu. Pátá kapitola je zaměřena na některé alternativní konstrukce určitého integrálu (zejména na Newtonův, Lebegueův a Kurzweilův integrál). Text je uzavřen doplňkem o konstrukci míry, která úzce souvisí s teorií určitého integrálu.
Buchkauf
Integrální počet v R, Ondřej Došlý, Petr Zemánek
- Sprache
- Erscheinungsdatum
- 2011
Lieferung
Zahlungsmethoden
Feedback senden
- Titel
- Integrální počet v R
- Sprache
- Tschechisch
- Autor*innen
- Ondřej Došlý, Petr Zemánek
- Verlag
- Masarykova univerzita
- Verlag
- 2011
- Einband
- Paperback
- Seitenzahl
- 222
- ISBN10
- 8021056355
- ISBN13
- 9788021056350
- Kategorie
- Lehrbücher, Persönlichkeitsentwicklung, Mathematik
- Beschreibung
- Integrální počet je druhou základní partií úvodního kurzu matematické analýzy. Toto skriptum je určeno posluchačům bakalářského studia odborné i učitelské matematiky, fyziky, matematické ekonomie a informatiky. Celý text je rozdělen do šesti kapitol. V úvodní kapitole jsou probrány základní metody určování primitivních funkcí. Druhá kapitola je věnována konstrukci, vlastnostem a výpočtu určitého (Riemannova) integrálu. Třetí kapitola pojednává o nevlastních integrálech, a to jak o integrálech přes neohraničený obor, tak i o integrálech z neohraničených funkcí. Ve čtvrté kapitole jsou studovány geometrické a některé základní fyzikální aplikace určitého integrálu. Pátá kapitola je zaměřena na některé alternativní konstrukce určitého integrálu (zejména na Newtonův, Lebegueův a Kurzweilův integrál). Text je uzavřen doplňkem o konstrukci míry, která úzce souvisí s teorií určitého integrálu.